## Some Musings on MathematicsRecently in a forum I read regularly and contribute to occasionally, a discussion arose about Cantor's theorem of the uncountability of the reals. From there we talked about the real numbers themselves, and someone, quite reasonably, said:
> Isn't the whole point of math that you expect at > some point to analyze the result of the symbol > manipulation and "read off" an interpretable > meaning from the answer? Not always, no. If you're doing applied math then yes. If you're doing theoretical physics then yes. But if you're doing pure math, then no. When Pure Math is explained to non-mathematicians, the audience always asks "Why?" and "Of what use is it?" The result is that mathematicians always have to motivate their explanations and give applications for the results. Pure Number Theory is motivated by applications in cryptography, pure Calculus is motivated by applications in ballistics and weather forecasting, pure Combinatorics is motivated by analysis of computer networks and data processing, pure Statistics is motivated by life assurance, insurance and gambling, pure Linear Algebra is motivated by optimization problems and Google's Page Rank algorithm. The truth is far simpler. Mathematicians are solving puzzles, and some don't come from the real world at all, and can't be motivated in that way.
Why do we care that there are only five Platonic Solids?
The true answer is because there Why do we care if every even number from 4 onwards can be written as the sum of two primes? Answer: We don't, really. But not knowing is an itch to scratch, and who knows what might turn up in our efforts to solve the problem. It was said by E.C.Titchmarsh: - It can be of no practical use to know that Pi is irrational, but if we can know, it surely would be intolerable not to know.
Part of the issue here is that in math, when you have a tough problem and you're working away at it you follow your instincts and create structures and objects and processes and relationships, never quite knowing where it will take you. Some of these arise very naturally, very easily, and then seem to have application beyond the specific problem you're working on. You get a sense that you haven't created them, but they exist independently, and you've uncovered them. Back to the original question ...
The reals are a bit like that. When you study equations
you want solutions to things like
3x=5 and so suddenly
you need fractions. Then you want to solve quadratics and
cubics (which arise naturally in astronomy) so you need
square roots and cube roots.
We've now got the numbers needed to express the solutions
to all polynomials. They're called the algebraic numbers,
and even though we might not have formulas to And so we turn to sequences of numbers. Here's one that turns up in nature:
If you plot these on a number line it looks like they get
closer and closer to some number, and they do. They
approach the Golden Ratio, which is known to be the
solution to the equation But what about this sequence:
Again, the numbers seem to be getting closer and closer together, they even seem to be piling up as if against a barrier beyond which they won't, or can't, pass. Suppose we plot them all on a number line, and you give me a really, really small disk. I can find a place where your disk covers everything from then on. Then if you give me an even smaller disk, I can find a place where your new disk covers everything from then on. I'd like to think that the numbers are approaching a limit. But they don't. Why not? Because there is no algebraic number that fits the bill. For every algebraic number you think of, the numbers in that sequence either never get close to it, or they end up moving away from it and never come back. It's almost as if there's a gap in the algebraic numbers. It's almost as if the sequence does approach a limit, but the limit is a kind of number we don't have yet.
So why don't we do what we did before?
When we couldn't solve equations like
And as an invention, the Real Numbers stand on their own.
They The fact that they are used in calculus, astronomy, fluid dynamics, predicting the weather, modelling the economy (for better or worse) and a myriad of other applications doesn't make them mere tools.
Further reading:
Niccolò Fontana Tartaglia came up with a general solution
to the cubic equation and, after some severe pressure, told
it to Gerolamo Cardano. Cardano later saw an unpulished
work by Ferro who had found the same solution, and so even
though Tartaglia had sworn him to secrecy, Cardano felt
justified in published it, prompting a life-long feud with
Tartaglia. Cardano's student, Lodovico Ferrari, solved the
quartic equation. In Cardano's book
- http://en.wikipedia.org/wiki/Lodovico_Ferrari
- http://en.wikipedia.org/wiki/Gerolamo_Cardano
- http://en.wikipedia.org/wiki/NiccolÃ²_Fontana_Tartaglia
- http://en.wikipedia.org/wiki/Scipione_del_Ferro
The number e (approximately 2.718281828459...) is
sometimes known as Euler's number. It turns up unexpectedly
in many areas of mathematics, but is most often associated
with compound interest, probability and combinatorics
(specifically, the "hat check problem")
This entire article is related to and affected by an article published in 1960 by the physicist Eugene Wigner entitled "The Unreasonable Effectiveness of Mathematics in the Natural Sciences"
The item that started this is here: Are The Reals Really Uncountable? You can comment in this article here: Some Musings On Mathematics |